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Theoretical and Experimental Study of the Resonant

Frequency of a Cylindrical Dielectric Resonator

D. MAYSTRE, P. VINCENT, AND J. C. MAGE

-Abstract —A rigorous modal method is described for calculating the

resonant frequencies of a circular cylindrical dielectric rod placed between

two perfectly conducting plates. Comparisons of the numerical results with

those obtained from another rigorous theory developed at the same time by

one of the authors show an accuracy better than 10 – 4. Comparison with

experimental data shows generally a very good agreement.

I. INTRODUCTION

During the last decade, dielectric resonators met an increasing

interest, due to the development of temperature-stable materials

[1], [2].

Several methods have been proposed in order to solve the

problem of determining resonant frequencies. The earliest papers
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dealt with simple devices like a sphere, or a cylinder between

metallic planes [3]–[5]. Practical devices require more intricate

calculations, and solutions are often approximate [6]–[1 1].

The theoretical method described here can be considered as an

extension of the rigorous study by Hakki and Coleman [4] in the

case where the distances between the dielectric rod and the

metallic plates are different from zero. Space is divided into two

complementary cylindrical regions where the field is expressed in

the form of two modal expansions with unknown coefficients.

The matching between these two expansions leads to an infinite

set of homogeneous linear equations. The resonant frequency is

obtained by looking for the zero of the determinant of the

truncated matrix.

A comparison is made with another rigorous theory, the dif-

ferential theory, quite different in nature, and the relative dis-

crep~cy never exceeds 10 4 when the two methods can be

implemented. Even though the same conclusion cannot be drawn

for the comparison with experimented data, the agreement is very

good and appears to be satisfactory, taking into account the

uncertainties about the actual experimental parameters and the

influence of the finite conductivity of the two plates. Thanks to

the great precision of the computer code, we are able to show that

the resonant frequency may be estimated very simply from au

equivalence rule, provided the air gaps are small.

II. THEORY

A. Basic Equations

We deal with the circular cylindrical rod represented in Fig. 1,

with permeability pO, real relative permittivity c, length h*, and

radius R. It is placed at distances hl and h ~ from two perfectly

conducting plates parallel to the Oxy plane. We denote by

1= hl + h ~ + h ~ the distance between these two plates.

The aim of this study is to compute the fundamentrd TE

resonant frequency. The O component F( r, z ) of the electric field,

which is independent of 6, satisfies the following equation:

d2F 1 13F

[ 1

82F
—+ TX+ kz(r, z)–~ F+— =0 (1)
i3r2 r az2

where k z ( r, z ) is the wavenumber which is equal to k: = (2 rr/A) 2

in the air and to k& in the rod.

On top of that, F must satisfy the following boundary condi-

tions:

F(r,O)=F(r, [)=O

Fand ~ are continuous forz = hl and z = hl + hz

d(rF)
F, ~ and consequently ~ are continuous for r = R.

(2)

Of course, F’(0, z) must vanish since F is a 6 component, and

F( r, z ) satisfies a radiation condition when r ~ m; in other

words, the field must decay exponentially outside the resonator.

B. Modal Expansions

Space is divided into two regions Q,X, (r > R) and Q,. (r < R).

For both regions, we establish that the field may be expanded in

series.

In flex,, kz( r, z) remains constant and equal to k;. From (1)

0018 -9480/83 /1000-0844$01 .00 01983 IEEE
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Fig. 1. Thecylindrictd dielectric resonator.

and (2), it can be written rigorously that

F(r, z)= &l(pnr)tn(z)
~=1

(3)

with

()t.(z) =sin ~z

( %)”2,) ’’’or-i k~-pH = (n2~2/12 – k’

and K1 denotes the modified Bessel function. In practice, we look

for nonradiating modes, for which all the p. are real.

Since G?inis not homogeneous, it is much more difficult to find

the relevant modal expansion in this region. Remarking that in

fact k’(r, z) is independent of r in this region, we can write (1) in

the form

DrFi- DZF= O (4)

where D, and DZ are operators acting on functions of r and z,

respectively.

Since D= is a self-adjoint operator, F carI be expanded in series

using the system of orthogonal eigenfunctions Un( z) of D= with

real eigenvalues q. [12], and it turns out that Unmaybe expressed

in the form

if O<z<hl, u. = a.sin(a.z) (5)

ifhl<z<hl+h2, u. = b.sin((l.z)+ c.cos(~.z) (6)

ifhl+h2<z <l, u. = d~sin[a~(z – 1)] (7)

with

an=(k~– qn)1’20r i(qn–k~)l’2

From the boundary conditions for U. and v;

r = h ~ + h z, we obtain after tedious calculations

~n+#n+J?Hh2=q~

with

tg+n=$tg(anhl)
\

n

tg+n=:tg(anh3).

at r=hl and

(8)

It is explained in the Appendix how the solutions of (8) maybe

obtained in a systematic manner. Now, let us show a fundamen-

tal property of these solutions: the real eigenvalues qu are less

than k~c. With this aim, we evaluate the integral I“ defined by

In= j’l):fin dz . (9)
o

First, we can notice that u~fi~ = (u~ti~)’ – lu~l’, and since u.(O)=

u.(f) = o

In=–@uiz. (lo)

On the other hand, lH may be expressed by replacing v: by

(qn – k’(r, Z))ZA

In=~[(~n–k2(r,z))lun12dz. (11)

From (10), we deduce that I. is always negative; then we derive

from (11) that (qfl – k’) must be negative, at least on a certain

part of the interval (O, 1). Obviously, that is impossible if q. > k$

> k;, therefore

q, < k:c . (12)

Finally, in Q,n, the field may be rigorously represented by the

expansion

F(r, z)= ~ AJ1(&nr)uH(z) (13)
~=1

with

$.= (q. )1” or i( - qn)l/2

J1 being the Bessel function of the first kind.

C. Matching the Two Modal Expansions

We match the modal expansion (3) and (13) by writing the

continuity of F and d( rF)/dr for r = R. The identities

d(xJ1(x))/dx = XJO(x) and d(xK1(x))/dx = – XKO(X) give

5 BnK,(pnR)tn(z)= 5 A,n~I($#)~~(z) (14)
n=l ~=1

- j pn%~o(@)tn(z)= f t#m/o(&#)~m(z).
~=1 ~=1

(15)

Projecting the two members of (14) and (15) on an arbitrary

function v~ (z ), and taking into account the orthogonality of the

v~, yield

Vm, ~ B,, K1(p#)(~m, t.) ‘X4~~l(&#)(~~,U~) (16)
~=1

- ~ p,,~.%(p.~)(ufi,t.) ‘f#~+)(&,~)(vn>U~) (17)
~=1

where

(%,t.)=~’fim(z) tn(z)dz.
o

Eliminating A ~, between the two above equations, it emerges

vrn, i Bn[PnIco(@).Tl(&#)

~=1

+6mJo(tmR)Kl(PnR)](um>~n) =0 (18)
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TABLE I

CONVERGENCE OF THE RESONANT WAVELENGTH FOR hl = O, h ~ = 13.37,

R = 8.995, E = 34.61, WHEN THE SIZE N OF THE SYSTEM IS INCREASED

IN THE MODAL METHOD. THE LAST LINE GIVES THE RESULT

OBTAINED FROM THE DIFFERENTIAL METHOD

N
Resonant wavelength Resonant wavelength

for h3 = 9.03 for h3 = 33.03

1 104.113 ‘ 110.941

2 102.999 105.237

3 102.898 103.873

4 102.893 103.978

5 102.879 104.035

6 102.878 103.987

7 102.877 103.947

9 102.876 103.943

11 102.876 103.933

17 102.876 103.929

21 103.929

Di ff. 102.873 103.923

—— ——

where the scalar product (v., t~ ) is given by

{[ ()
(U.,l~)=&~ ~ sin(~. )cos ~kl

+(–l)msin($:)cos
( )1~h3

‘B. [cos(@. )sin(~h,)

+(-l) rncos(+~) sin(~h3)_J} (19)

with

$:=–%-pnhz=$.-q~.

D. Numerical Implementation

To find the resonant frequency we first put the value of

(u,,, tm,) given by (19) into (18), then we truncate the homoge-
neous system of linear equations so obtained. Then the frequency

is varied and we look for the zero of the determinant of the

system using a regzda falsi method. Table I shows the convergence

of the numerical results when the size N of the system is in-

creased. One can see that N = 5 is enough to obtain the asymp-

totic result (102.873) to within 10-4, for h3 = 9.03. This conclu-

sion no longer holds for h = 33.03 where N = 7 is necessary to

obtain this precision. These results have been compared with

those obtained from a rigorous differential theory developed by

one of the present authors (P.V.), which is to be published in

Applied Physics A. It is interesting to notice that the two for-

malisms, quite different from a theoretical point of view, agree to

within 3.10–5 for h~ = 9.03, or to within 6.10–5 for hq = 33.03. It

is also worth noting that the asymptotic value given by the modal

theory is likely to be the best one. Indeed, for reasons of

computation time, the convergence of the right-most digit given

by the differential theory has not been observed. The great
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~ 3.1

g

u@ 3.0
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~ 2.9 .
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~ 2.8 .

2,7
0 10 20 30 40

aw gap h3 ( mm )

Fig. 2, Comparison between theoretical and experimental results for a reso-

nator with R = 8995 mm, hl = O, h2 =13.37 mm, c = 34.61.

.:~
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3.2

3.1
/Lf

3.00~

air gap h3 ( mm )

Fig, 3, The same as Fig. 2 but R = 8.99 mm, h, = O, hz = 9.99, e = 35.29.

precision is all the more remarkable since the computation is

made with a HP 1000 F computer, with only six significant digits.

It appears that N must increase while (hl + h ~)jh ~ is increased.

On the whole, the execution time takes a few seconds.

E. Comparison with Other Theories

When hl = h ~ = O, our formalism tends to the one used by

Hakki and Coleman [4]. Indeed, in this case, the functions u.(z)

and t,, (z) become proportional since +. = prr and I). = p n,

according to (8). It turns out that (u., tw) is nil, except for

n = m, and the sum in the left-hand member of (18) reduces to a

single term n = m, $m being equal to ( k~c – m ‘w 2/12)1/2 or

i( m 2m2/12 – k&)112. The fundamental resonant frequency is ob-

tained by solving the equation obtained for m =1, i.e., the basic

equation given by Hakki and Coleman [4]. The equations for

m = 2,3, . . . provide the resonant frequencies of higher modes.

[tis veiy important to notice that, as soon as hl or h ~ d~fers from

zero, the calculation of the fundamental resonant frequency requires

taking into account all the values of m, at least from a theoretical

point of view. In other words, the non-null value of hl or h ~

creates a coupling between all the terms of the series in (13).

Recently, Bonetti and Atia [9] proposed a method for a closely

related problem. In this method, the field for r < R is only

described by the first term of the series contained in (13). This

theory appears to be questionable from a theoretical point of

view and in practice, it is obvious, on Table I, that this approxi-

mation, which is close to the approximate solution obtained with

N =1, cannot provide the same accuracy as a rigorous method,

especially if h ~ or h ~ is not negligible.
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Fig. 4. The resonant frequencies of the two resonators are very close to each

other. (a) Case I. (b) Case II.

III. COMPARISON BETWEEN EXPERIMENTAL AND

l%f30RETIcAL RESULTS

The measurement cell is composed of two copper plates (150x

150 mm). In the lower plate, two symmetric loops perform
coupling from the microwave generator and to the detector. Very
low coupling (O,01) avoids perturbation of the natural resonant
frequency. The dielectric rod is laid on the lower plate, between
the loops (hl = O), and the upper plate can be set in order to vary

h~.

The value of the perrnittivity is deduced from the case h ~ = O,

using the theory of Hakki and Coleman [4].

Figs. 2 and 3 show a comparison between theoretical and

experimental results, for two different resonators. The agreement

obtained in Fig. 2 is very good, generally better than 10 – 3 in

relative value. On the other hand, the discrepancy observed in

Fig. 3 is higher, of the order of 3.10-3. We conjecture that the

main origin of the discrepancy must be found in heterogeneous-

ness of the dielectric material. Indeed, small spatial variations of

the permittivity related to density or chemical composition

fluctuations imply significant frequency shifts. This result means

that consistency of the permittivity is an important parameter in

elaborating devices such as filters.

IV. EQUIVALENCE RULE

From our numerical computation, we have deduced the follow-

ing empirical rule:

If hi/h ~ and h ~/h ~ are small, the resonant frequeny is not

changed, to the first order when the air gaps between the dielectric

and the two plates are filled with a dielectric of the same permittiv-

ity c.

This rule, outlined in Fig. 4, can be easily demonstrated by

remarking that, when h ~ and h ~ are small, (8) becomes

tan~. =/?nhl (20)

tanrjn =/3nh3 (21)

tan(~,,hz)= -tan(q$n+ ~n)=-~n(hl+h~). (22)

We deduce that tan(&h2) is small, thus

~nhz=–~.(h,+hs)+pn (23)

and finally

pn=l!?. (24)

These values of /3~ are exactly those obtained for the resonator

corresponding to case II of Fig. 4. Moreover, it is easy to show

that, when hl and h3 are small, (v., tm)given by (19) is nil to the

first order. Finally, we can conclude that (18) is the same, to the

first order, in the two cases of Fig. 4.

This empirical rule is numerically verified in Fig. 5. We have

plotted the resonant frequency of a dielectric resonator having

A
L1
c
$
r
!!

L

-#
c
0
K
0
@

c?

3,30. ,

3.28.

3.26.

3,24..

3.22.

.2.L.——J
10 11 12 13 14

Dielectric depth h, (mm)

Fig. 5. Resonant frequency of a dielectric resonator as a function of h* for

hl=O, h2+h3=l=13.37, R=8.995, <=34.61.

h ~= O, when hs increases, 1being constant. It is worth noting that

the resonant frequency is a quadratic function of h ~ = 1– h ~ at

the right-hand side of the figure. This entails that a relative

variation of 2.’10 – 1 of h * only produce a corresponding variation

of 10-2 of the resonant frequency, provided I is kept constant.

This rule appears to be ve~ interesting in practice since it permits

the use of the simple calculation proposed by Hakki and Coleman to

know the resonant frequency of a dielectric resonator with a good

accuracy, provided hi/h ~ and hs /h z are small.

V. CONCLUSION

The rigorous method presented in this paper allows us to

crdculate with great precision the resonant frequency of the

fundamental TE mode of a dielectric resonator. The accuracy of

this method is better than the consistency of experimental results,

so that the agreement of this “modal” method with a quite

different “differential” method is a more meaningful criterion

than comparison with experiments.

APPENDIX

We have to solve (8), which can be written in ‘the form

F’(u) =tan(@.++. )+tan(/?nh2) =0. (Al)

The left-hand member will be considered as a function of u = /3~,

which is positive, as seen in Section II, with

(A2)

(A3)

v= (u2+kj(l –c))1’20r i(k2(c–1)–u2)l’2. (A4)

It is worth noting that the right-hand member of (A2) and (A3) is

always real, in the interval u = (O, k~(c – 1)) where v is imaginary,

From cumbersome calculations, it can be shown that $. and $.

are monotonous (increasing) functions of u. So tan ( +. + +.) is

also an increasing function of u, and since tan(h * u) satisfies the

same property, F( 24) is monotonous.

This fundamental property enables us to assert that the num-

ber of non-null solutions of (Al) between O and the abscissa u. of

the nth asymptote ( F(u,, ) = co) is equal to n – 1. A part of these

asymptotes are analytic and given by tan ( h zu) = O, i.e.,

u=(2p+l)*, withp >0. (A5)
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The complementary subset of asymptotes is given by tan($n +

+.) = co, or, developing the tangent and using (A2) and (A3)

‘(”’=(=)(+)=; (A6)

The left-hand member of (A6) is the product of two monotonous

functions but is not monotonous. However, a careful examination

of G(u) shows that between O and the m th asymptote u~ of

G(u), the number of solutions of (A6) is equal to m.

Now, the values of u: are analytic and given by

uh1=(2q+ l): (A7)

or

uh3 = (2q’+l); . (AS)

Finally, in an interval (O, u~), we are able to determine the

number m of non-analytic asymptotes of F(u), thus to derive the

total number n = m + m’ of asymptotes, m’ being the number of

analytic asymptotes given by (A5) between O and u~.

To compute the successive zeros of I’( u), we calculate F(u) at

a certain number P of equidistant points between O and u~. We

detect the approximate positions of the zeros (when the sign of

F(u) goes from a negative to a positive value) and of the

asymptotes (the opposite). The number n’ of computed asymp-

totesis compared to n = m + m’. If n’< n, the computation is

started again, with 2P points, then 4P points, etc, as long as n’ is

not equal to n. So, we know that all the asymptotes have been

detected, and it suffices to verify that a zero of F(u) has well

been found between two consecutive asymptotes to be sure that

no zero has been forgotten until the last asymptote. A second

step of the computation is to enhance the precision on the zeros

by using the method of the secant, starting from the approximate

values.

As regards the numerical implementation, this very effective

systematic method appears to be necessary since the numerical

exploitation has shown that F(u) can have zeros and asymptotes

very close to each other. Therefore, a rough search for the zeros

often misses some of them, which is catastrophic for the final

result.
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Moment-Method Solutions and SAR Calculations for

Inhomogeneous Models of Man with Large
Number of Cells

JOHN F. DEFORD, OM P. GANDHI, FELLOW, IEEE, AND

MARK J. HAGMANN, MEMBER, IEEE

Abstract —This paper describes an iterative band approximation method

(BAM) that is useful for solution of large matrix eqnations where the

elements of the matrix decrease in magnitode with increasing distance from

the diagonal. The method involves the inversion of a band about the

diagonal which is nsed to obtain a first estimate of the sohrtion. This

estimate, afong with the remaining elements in the matrix above and below

the band, is nsetf to iterate to the fhtaf solution. Dne to the substantial

reduction in the size of the matrix which is actnafly inverted, the method

has been applied to the solution of full complex matrix equations involving

up to 1698 unknowns. BAM is used to obtain distributions of EM energy

absorption for man models with 180-1132 cells.

I. INTRODUCTION

To understand the biological effects of electromagnetic fields,

it is necessary to quantify the whole-body absorption and its

distribution for the various irradiation conditions. Moment-

method solutions with inhomogeneous man models have been

used to obtain the distributions of time-rates of absorbed energy

(specific absorption rates (SARS)) for free-space irradiation

[1]-[3], for a human in contact with and slightly removed from a

ground plane and in the presence of metallic comer reflectors [4].

Combined with the plane-wave-spectrum approach to prescribe

the incident fields, moment-method solutions have also been used

to obtain SAR distributions for leakage-type (uncoupled) near-

field exposure conditions such as those from RF sealers, etc. [5].

In fact, in spite of the claims made for other numerical ap-

proaches such as finite-element methods, etc., the moment-method

is the only successful procedure used at the present time to obtain

SAR distributions for inhomogeneous models of biological bod-

ies.

Most of our work has used a block model of man using 180

cubical cells of various sizes arranged for a best fit of the contour

on diagrams of the 50th percentile standard man [3]. With

considerably larger computation times, we have also described

solutions in which a total of 340 cells were used to provide a finer

detail of energy deposition in the head and neck allowing us to

pinpoint the frequency region for head resonance [6]. The proce-

dures used in the past have required the use of full complex

matrices 3N x 3N in dimension for a model with N cells. Effi-
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