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Theoretical and Experimental Study of the Resonant
Frequency of a Cylindrical Dielectric Resonator

D. MAYSTRE, P. VINCENT, anp J. C. MAGE

Abstract —A rigorous modal method is described for calculating the
resonant frequencies of a circular cylindrical dielectric rod placed between
two perfectly conducting plates. Comparisons of the numerical results with
those obtained from another rigorous theory developed at the same time by
one of the authors show an accuracy better than 10 ~4. Comparison with
experimental data shows generally a very good agreement.

I. INTRODUCTION

During the last decade, dielectric resonators met an increasing
interest, due to the development of temperature-stable materials

(1], [2].
Several methods have been proposed in order to solve the
problem of determining resonant frequencies. The earliest papers
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dealt with simple devices like a sphere, or a cylinder between
metallic planes [3]-[5]. Practical devices require more intricate
calculations, and solutions are often approximate [6]-[11].

The theoretical method described here can be considered as an
extension of the rigorous study by Hakki and Coleman [4] in the
case where the distances between the dielectric rod and the
metallic plates are different from zero. Space is divided into two
complementary cylindrical regions where the field is expressed in
the form of two modal expansions with unknown coefficients.
The matching between these two expansions leads to an infinite
set of homogeneous linear equations. The resonant frequency is
obtained by looking for the zero of the determinant of the
truncated matrix.

A comparison is made with another rigorous theory, the dif-
ferential theory, quite different in nature, and the relative dis-
crepancy never exceeds 10™ % when the two methods can be
implemented. Even though the same conclusion cannot be drawn
for the comparison with experimental data, the agreement is very
good and appears to be satisfactory, taking into account the
uncertainties about the actual experimental parameters and the
influence of the finite conductivity of the two plates. Thanks to
the great precision of the computer code, we are able to show that
the resonant frequency may be estimated very simply from an
equivalence rule, provided the air gaps are small.

II. THEORY

A. Basic Equations

We deal with the circular cylindrical rod represented in Fig. 1,
with permeability p,, real relative permittivity ¢, length 4,, and
radius R. It is placed at distances h; and &, from two perfectly
conducting plates parallel to the Oxy plane. We denote by
! = hy + h, + h, the distance between these two plates.

The aim of this study is to compute the fundamental TE
resonant frequency. The § component F(r, z) of the electric field,
which is independent of §, satisfies the following equation:

(k(r/.) )m‘éijo )

PF 109F
gr: r or

where k*(r, z) is the wavenumber which is equal to k3 = 27/A)>
in the air and to k2e in the rod.
On top of that, F must satisfy the following boundary condi-

tions:
F(r,0)=F(r,1})=0
aF .
F and 5z are continuous forz=h,and z = h, + A,
d(rF) .
—,— are continuous for » = R.
ar
@)
Of course, F(0O,z) must vanish since F is a § component, and

F(r,z) satisfies a radiation condition when »—o0; in other
words, the field must decay exponentially outside the resonator.

F
F, %; and consequently

B. Modal Expansions

Space is divided into two regions Q. (r > R) and € (r <R).
For both regions, we establish that the field may be expanded in
series.

In @, k*(r,z) remains constant and equal to k3. From (1)

ext?
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The cylindrical dielectric resonator.

and (2), it can be written rigorously that

F(rz)= 3 B,K,(ar)iy(2) 3)

n=1

with

t,(z) =sin(n—;rz)v

22,12 _ 1.2)\1/? ,_n'm? 2
p,"=(n'n'/l _ko) Or_i(ko_ 12 )
and K denotes the modified Bessel function. In practice, we look
for nonradiating modes, for which all the p, are real.

Since ;, is not homogeneous, it is much more difficult to find
the relevant modal expansion in this region. Remarking that in
fact k(r, z) is independent of r in this region, we can write (1) in
the form

D,F+D,F=0 4)

where D, and D, are operators acting on functions of r and z,
respectively.

Since D, is a self-adjoint operator, F can be expanded in series
using the system of orthogonal eigenfunctions v,(z) of D, with
real eigenvalues 7, [12], and it turns out that v, may be expressed
in the form

if0<z<ghy, v, =a,sin(a,z) )
if hy<z<hi+h,, v,=b,sin(B,z)+c,cos(B,z) 6)
if i+hygz<], v,=d,sinla,(z—1)] @)

with
a,=(k3~mn,)""ori(m,—k2)""”

8= (Ke=n,)" " or i(n, — k)"

From the boundary conditions for v, and v, at r=h, and
r=nh;+ h,, we obtain after tedious calculations

¢n+‘l’n+ﬁnh2=qﬂ (8)
with

B,
tg¢'n = &—tg(anhl)

tg¢n=%tg(anh3)-

It is explained in the Appendix how the solutions of (8) may be
obtained in a systematic manner. Now, let us show a fundamen-
tal property of these solutions: the real eigenvalues 7, are less

than kge. With this aim, we evaluate the integral 7, defined by
l ers
I= j;vn D, dz. 9

7, ’

First, we can notice that v//5, = (v.#,)’ — |v;|?, and since 1,(0) =
v,(1)=0

(10)
On the other hand, I, may be expressed by replacing v) by
(7In - kz(rn Z))vn
1
Inr=_/(;(n,,—kz(r,z))|v,,{2dz. (11)
From (10), we deduce that I, is always negative; then we derive
from (11) that (5, — k?) must be negative, at least on a certain

part of the interval (0, /). Obviously, that is impossible if 7, > k2
> kZ, therefore

!
I,= —f0|u,;|2dz.

7, < k.

(12)

Finally, in €, the field may be rigorously represented by the
expansion

©
F(r,z)= ZlAnJl(€nr)vn(Z) (13)
n=
with |
§o=(n,)ori(=n,)"”
J; being the Bessel function of the first kind.

C. Matching the Two Modal Expansions

We match the modal expansion (3) and (13) by writing the
continuity of F and d(rF)/dr for r= R. The identities
d(xJy(x))/dx = xJy(x) and d(xK,(x))/dx = — xK,(x) give

X Bk R) ()= T Aph(EaR)on(z) (19

o0 [os]
- E p‘anKO(p‘nR)tn(Z)= Z gmAmJO(ng)Um(Z)‘
n=1 m=1
(15)
Projecting the two members of (14) and (15) on an arbitrary

function v,,(z), and taking into account the orthogonality of the
v,,, yield

Vm, Z BnKl(I"'nR)<Um’tn>=AmJ1(€mR)<Um’ Um>

n=1

(16)
- Z p‘anKO(IJ‘nR)<vm’tn> =£mAmJO(£mR)<Um’Um> (17)
n=1

where
1
(s 1) = [ 5n(2)1,(2) .
Eliminating 4,, between the two above equations, it emerges

Vm, Z Bn[ll'nKO(,"‘nR)Jl(ng)

n=1

+ngO(ng)Kl(IJ‘nR)]<vm’tn>=0 (18)
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TABLE I
CONVERGENCE OF THE RESONANT WAVELENGTH FOR i1, =0, h, =13.37,
R =8.995, ¢ = 34.61, WHEN THE SIZE N OF THE SYSTEM IS INCREASED
IN THE MODAL METHOD. THE LAST LINE GIVES THE RESULT
OBTAINED FROM THE DIFFERENTIAL METHOD

N Resonant wavelength Resonant wavelength
for h; = 9.03 for hy; = 33.03
1 104,113 110.941
2 102.999 105.237
3 102.898 103.873
4 102.893 103.978
5 102.879 104.035
6 102.878 103.987
7 102.877 103.947
9 102.876 103.943
11 102.876 103.933
17 102.876 103.929
21 103.929
piff. 102.873 103.923
where the scalar product (u,,¢,,) is given by
C =Snm{mlﬂ[sin(¢n)cos(%zhl)

+(—1)msin(¢;)cos(mlzh3)]
-8, [cos(cﬁ,,)sin(#hl)

+(—1)mcos(lllf,)5in($h3)J} (19)

with
kb;:m(bn—ﬁnhZ:\pn_qW'

D. Numerical Implementation

To find the resonant frequency we first put the value of
(Uys 1) given by (19) into (18), then we truncate the homoge-
neous system of linear equations so obtained. Then the frequency
is varied and we look for the zero of the determinant of the
system using a regula falsi method. Table I shows the convergence
of the numerical results when the size N of the system is in-
creased. One can see that N =35 is enough to obtain the asymp-
totic result (102.873) to within 10~ *, for h;=9.03. This conclu-
sion no longer holds for h =33.03 where N =7 is necessary to
obtain this precision. These results have been compared with
those obtained from a rigorous differential theory developed by
one of the present authors (P.V.), which is to be published in
Applied Physics A. It is interesting to notice that the two for-
malisms, quite different from a theoretical point of view, agree to
within 3.10™° for 3 = 9.03, or to within 6.10~° for 4, = 33.03. It
is also worth noting that the asymptotic value given by the modal
theory is likely to be the best one. Indeed, for reasons of
computation time, the convergence of the right-most digit given
by the differential theory has not been observed. The great
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Fig. 2. Comparison between theoretical and experimental results for a reso-
nator with R = 8 995 mm, #; = 0, £, =13.37 mm, € = 34.61.
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precision is all the more remarkable since the computation is
made with a HP 1000 F computer, with only six significant digits.
It appears that N must increase while (h, + h,)/h, is increased.
On the whole, the execution time takes a few seconds.

E. Comparison with Other Theories

When hy=hy=0, our formalism tends to the one used by
Hakki and Coleman [4]. Indeed, in this case, the functions v,(2)
and ¢,(z) become proportional since ¢,=pm and Y, =pm,
according to (8). It turns out that (v,,%,) is nil, except for
n=m, and the sum in the left-hand member of (18) reduces to a
single term n=m, £, being equal to (k2e— m?r%/1*)/? or
i(m*n*/1> — ke)'/>. The fundamental resonant frequency is ob-
tained by solving the equation obtained for m =1, i.e., the basic
equation given by Hakki and Coleman [4]. The equations for
m=12,3,--- provide the resonant frequencies of higher modes.

It is very important to notice that, as soon as h, or h differs from
zero, the calculation of the fundamental resonant frequency requires
taking into account all the values of m, at least from a theoretical
point of view. In other words, the non-null value of h, or hsy
creates a coupling between all the terms of the series in (13).
Recently, Bonetti and Atia [9] proposed a method for a closely
related problem. In this method, the field for r< R is only
described by the first term of the series contained in (13). This
theory appears to be questionable from a theoretical point of
view and in practice, it is obvious, on Table I, that this approxi-
mation, which is close to the approximate solution obtained with
N =1, cannot provide the same accuracy as a rigorous method,
especially if &, or k4 is not negligible.
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Fig. 4. The resonant frequencies of the two resonators are very close to each
other. (a) Case L. (b) Case IL

III. CoOMPARISON BETWEEN EXPERIMENTAL AND
THEORETICAL RESULTS

The measurement cell is composed of two copper plates (150 X
150 mm). In the lower plate, two symmetric loops perform
coupling from the microwave generator and to the detector. Very
low coupling (0,01) avoids perturbation of the natural resonant
frequency. The dielectric rod is laid on the lower plate, between
the loops (#; = 0), and the upper plate can be set in order to vary
hs.
The value of the permittivity is deduced from the case k5 =0,
using the theory of Hakki and Coleman [4].

Figs. 2 and 3 show a comparison between theoretical and
experimental results, for two different resonators. The agreement
obtained in Fig. 2 is very good, generally better than 1073 in
relative value. On the other hand, the discrepancy observed in
Fig. 3 is higher, of the order of 3.10™. We conjecture that the
main origin of the discrepancy must be found in heterogeneous-
ness of the dielectric material. Indeed, small spatial variations of
the permittivity related to density or chemical composition
fluctuations imply significant frequency shifts. This result means
that consistency of the permittivity is an important parameter in
elaborating devices such as filters.

IV. EQUIVALENCE RULE

From our numerical computation, we have deduced the follow-
ing empirical rule:

If hy/hy and hy/h, are small, the resonant frequency is not
changed, to the first order when the air gaps between the dielectric
and the two plates are filled with a dielectric of the same permittiv-
ity €.

This rule, outlined in Fig. 4, can be easily demonstrated by
remarking that, when 4, and A, are small, (8) becomes

tan¢, = B,h, (20)
tan ‘Pn =Bnh3 (21)
ta‘n(BnhZ)=_tan(¢n+¢n):_18n(h1+h3)' (22) .
We deduce that tan(B,4,) is small, thus
Bnh2=_ﬂn(h1+h3)+p'” (23)
and finally
B.=Hr (24)

These values of B8, are exactly those obtained for the resonator
corresponding to case II of Fig. 4. Moreover, it is easy to show
that, when 4, and 4 are small, {v,,t,,) given by (19) is nil to the
first order. Finally, we can conclude that (18) is the same, to the
first order, in the two cases of Fig. 4.

This empirical rule is numerically verified in Fig. 5. We have
plotted the resonant frequency of a dielectric resonator having
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Fig. 5.

hy =0, when £, increases, / being constant. It is worth noting that
the resonant frequency is a quadratic function of h; =7/—h, at
the right-hand side of the figure. This entails that a relative
variation of 210~ of A, only produce a corresponding variation
of 1072 of the resonant frequency, provided / is kept constant.

This rule appears to be very interesting in practice since it permits
the use of the simple calculation proposed by Hakki and Coleman to
know the resonant frequency of a dielectric resonator with a good
accuracy, provided 4, /h, and h4 /h, are small.

V. CONCLUSION

The rigorous method presented in this paper allows us to
calculate with great precision the resonant frequency of the
fundamental TE mode of a dielectric resonator. The accuracy of
this method is better than the consistency of experimental results,
so that the agreement of this “modal” method with a quite
different “differential” method is a more meaningful criterion
than comparison with experiments.

APPENDIX

We have to solve (8), which can be written in the form

The left-hand member will be considered as a function of u=8,,
which is positive, as seen in Section II, with

tan<1_>n=-gtan(hlv) (A2)

tan lljn = % tan(h3u) (A3)

v=(u2+k2(1-¢)) " ori(k2(e—1)—u?)">. (A4)

It is worth noting that the right-hand member of (A2) and (A3) is
always real, in the interval u € (0, k3(e — 1)) where v is imaginary.

From cumbersome calculations, it can be shown that ¢, and ¢,
are monotonous (increasing) functions of u. So tan(¢, +¢,,) is
also an increasing function of u, and since tan(A,u) satisfies the
same property, F(u) is monotonous.

This fundamental property enables us to assert that the num-
ber of non-null solutions of (Al) between 0 and the abscissa u,, of
the nth asymptote (F(u,) = c0) is equal to n —1. A part of these
asymptotes are analytic and given by tan(h,u) =0, ie,

T

withp > 0. (A5)
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The complementary subset of asymptotes is given by tan(¢, +
¥, ) = 00, or, developing the tangent and using (A2) and (A3)

o= (22 )L

The left-hand member of (A6) is the product of two monotonous
functions but is not monotonous. However, a careful examination
of G(u) shows that between 0 and the mth asymptote u), of
G(u), the number of solutions of (A6) is equal to m.

Now, the values of u/, are analytic and given by

Uh1=(2q+1)%

(A6)

(A7)

vhy=(2¢'+1)7. (A8)

Finally, in an interval (0, u,,), we are able to determine the
number m of non-analytic asymptotes of F(u), thus to derive the
total number » = m + m’ of asymptotes, m” being the number of
analytic asymptotes given by (A5) between 0 and u/,.

To compute the successive zeros of F(u), we calculate F(u) at
a certain number P of equidistant points between 0 and u;,. We
detect the approximate positions of the zeros (when the sign of
F(u) goes from a negative to a positive value) and of the
asymptotes (the opposite). The number n’ of computed asymp-
totesis compared to n=m + m’. If n’<n, the computation is
started again, with 2 P points, then 4 P points, etc, as long as »n’ is
not equal to n. So, we know that all the asymptotes have been
detected, and it suffices to verify that a zero of F(u) has well
been found between two consecutive asymptotes to be sure that
no zero has been forgotten until the last asymptote. A second
step of the computation is to enhance the precision on the zeros
by using the method of the secant, starting from the approximate
values.

As regards the numerical implementation, this very effective
systematic method appears to be necessary since the numerical
exploitation has shown that F(u) can have zeros and asymptotes
very close to each other. Therefore, a rough search for the zeros
often misses some of them, which is catastrophic for the final
result.
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Moment-Method Solutions and SAR Calculations for
Inhomogeneous Models of Man with Large
Number of Cells

JOHN F. DEFORD, OM P. GANDHI, FELLOW, IEEE, AND
MARK J. HAGMANN, MEMBER, IEEE

Abstract — This paper describes an iterative band approximation method
(BAM) that is useful for solution of large matrix equations where the
elements of the matrix decrease in magnitude with increasing distance from
the diagonal. The method involves the inversion of a band about the
diagonal which is used to obtain a first estimate of the solution. This
estimate, along with the remaining elements in the matrix above and below
the band, is used to iterate to the final solution. Due to the substantial
reduction in the size of the matrix which is actually inverted, the method
has been applied to the solution of full complex matrix equations involving
up to 1698 unknowns. BAM is used to obtain distributions of EM energy
absorption for man models with 180-1132 cells.

I. INTRODUCTION

To understand the biological effects of electromagnetic fields,
it is necessary to quantify the whole-body absorption and its
distribution for the various irradiation conditions. Moment-
method solutions with inhomogeneous man models have been
used to obtain the distributions of time-rates of absorbed energy
(specific absorption rates (SAR’s)) for free-space irradiation
[1]-[3], for a human in contact with and slightly removed from a
ground plane and in the presence of metallic corner reflectors [4].
Combined with the plane-wave-spectrum approach to prescribe
the incident fields, moment-method solutions have also been used
to obtain SAR distributions for leakage-type (uncoupled) near-
field exposure conditions such as those from RF sealers, etc. [5].
In fact, in spite of the claims made for other numerical ap-
proaches such as finite-element methods, etc., the moment-method
is the only successful procedure used at the present time to obtain
SAR distributions for inhomogeneous models of biological bod-
ies.

Most of our work has used a block model of man using 180
cubical cells of various sizes arranged for a best fit of the contour
on diagrams of the 50th percentile standard man [3]. With
considerably larger computation times, we have also described
solutions in which a total of 340 cells were used to provide a finer
detail of energy deposition in the head and neck allowing us to
pinpoint the frequency region for head resonance [6]. The proce-
dures used in the past have required the use of full complex
matrices 3N X3N in dimension for a model with N cells. Effi-
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